
I N H A B I T A N C E

A DIGITAL INTERACTIVE INSTALLATION
BY SPENSER SPRATLIN

IN AFFILIATION WITH TEMPLE UNIVERSITY

TABLE OF CONTENTS

Inhabitance Abstract………………………………………………………..………………….…1

Mechanical Art in the Age of Mechanical Reproduction…………….……..3

Timeline of Testing and Completed Work………………………….………….…….4

Budget Breakdown and Total Costs.……………………………..……………………..7

Physical Setup Instructions…………………………………………………………..………8

Hardware Requirements………………………………………………….……………11

Technical Breakdown………….……………………………………………….…………….….12

Software Requirements………………………………………………………………..13

Inspection of Source Code…………………………………………….…………….14

Inhabitance.pde…………………………………………….……………………14

Box.pde………………………………………………………………………….…..22

External Assets and Data……………………………………….…………34

Frequently Used Learning Resources……………………………….…………….35

Conclusion and Final Thoughts…………………………………….………….…………37

Inhabitance: A Digital Interactive Installation
Spenser Spratlin

Abstract

Inhabitance is a Digital Interactive Installation employing the use of projection design,

sound design, infrared depth mapping, and complex programming in the languages Processing

and Java, in order to create an experiential work that leaves a lasting impact on both participants

and the work itself.

At it’s core, Inhabitance is about spatial and sensory presence. Taking distinct inspiration

from other interactive projection works such as Snow Fall (2009) by Italian media studio FUSE°,

and Text Rain (1995) by Camille Utterback and Romy Achituv, Inhabitance encourages

participants to allow the boundary between their physical bodies and digital representations to

blur. Participants who enter the active area of the installation are greeted with a white silhouette

of themselves in a sea of letters. These letters, as they will soon discover, are not stationary. They

react and interact with the movements made within the active area of the installation. Similarly to

how participants in Text Rain soon begin to experiment with the interaction with the text, those in

Inhabitance begin to “play” and test the rules of this newfound sensory environment. However,

there is one more layer of interaction to be discovered. As soon as a letter moves, it creates a

sound. Another is added to the space when another letter is moved. Each interactive object on the

screen fills the space with sound, allowing participants to orchestrate their own accompaniment

to the space. As those inside come to allow the boundary between physical and digital to blur,

they now also begin the process of blurring the boundary between sight and sound. Reminiscent

of Synesthesia (the condition where one sense triggers the experience of a different sense, such

as sound triggering a sense of touch), the blurring of senses allows participants to experience a

sense of “diminished consciousness of self”, and create an audiovisual experience totally unique

to them. These letters and sounds will continue long after the participants have left the space,

allowing messages, chords, or any other lasting impression to be passed onto those that will

1

come next. Each new participant’s experience is a fully unique version, informed by those that

have come before.

“Under the hood” of Inhabitance is a complex marriage of software and hardware. Kinect

cameras create an accurate depth map of the space, and feed their findings directly into

Processing. Processing, with the help of libraries crafted by Daniel Schiffman, takes the Kinect

information and uses that to draw a silhouette of any participants in a specific range. The letters

and sounds are also handled by Processing, but without the use of a pre-built library. The letter

objects, sonic interaction, and collision have all been coded by hand and are specific to the

use-case of Inhabitance.

2

Mechanical Art in an age of Mechanical Reproduction

In 1936, German philosopher Walter Benjamin crafted the concept of the “Aura” in

relation to physical works of art as a quality of the work that could not be reproduced through

mechanical techniques like Photography. Benjamin would go on to argue that the “Aura” was

something to be rebelled against to aid in the democratization of art, but what if the “Aura” could

be exploited through mechanical reproduction?

Presence is the pillar on which all art stands. Without viewers to experience, view, or

otherwise interact with a work of art, the social purpose of that art cannot be fulfilled. This

experiential nature of art is true regardless of reproducibility, though this changes and magnifies

when the work is designed with reproduction in mind. The “Aura” that Benjamin writes about

survives Mechanical Reproduction when Mechanical Reproduction is crucial to the work itself.

Mechanical Art possesses an inescapable “Aura” that fuels its acceleration through the Digital

Age. This is doubly true for Mechanical (Digital) Installation. The “Aura” is the work, and the

work is the “Aura”. They cannot exist without one another. This is the conceptual base on which

all of my work stands, in one way or another. To capture the experiential nature of art, to exploit

the Aura, and through the use of live video and sensor technology, ensure that the work can quite

literally not exist without it.

Without Presence there is no Art. Without Art, there is no Presence.

3

TIMELINE - START TO FINISH

January 2022
- Idea Drafting in Media Arts Theory Practice class.
- Live Video used in MadMapper, Development of Core Concepts begins
- First idea drafting, “Interactive Shadow”

February 2022
- Beginning technology tests
- Troubleshooting video feed, Implementing usage of FS5 OBS Link, and Elgato

HD60 to handle video feeds.
- MadMapper dropped. Projection Software Research Begin
- Begin research into Physical Interfaces.
- Purchase of Isadora 3 (Projection Designer)

March 2022
- First conclusive tests, accurate “interactive Shadow” in tandem with Alpha

Channel integration.
- Visual Optimization Begin, Image Processing in Isadora 3
- Begin testing for larger scale iterations, purchase of Arduino and FSRs

April 2022
- Coding Arduino (C++) and assembly of first full iteration.
- Fabrication of FSRs into sensor mat.
- Implementation of Arduino Processor into Isadora 3
- Implementation of Albert Camus’s “Myth of Sisyphus”
- First device transfer onto Temple Mac Mini
- First full Exhibition at Diamond Screen Festival (Awarded)

June 2022
- Research into Kinect technology, integration into Isadora.
- Research and Implementation of Body Tracking in Isadora 3 (Unstable)
- Format inverted from “Interactive Shadow” to “Interactive White Silhouette”

July 2022
- Development of new features “Ghost” feature fully functional

August 2022
- Second Full Exhibition at “Perpetual Motion” show in Lancaster PA
- Revised Text element to excerpt from “A Thing Like You And Me”
- Problems documented with Exterior exhibitions
- Stability Problems Persist, Research into Optimization begin

4

September 2022
- Research into first iterations of Sonic Component, adoption of Overhead Cam

method.
- Significant Stability Issues documented with both Body Tracking and Overhead

Cam. Previous Stability Issues still unsolved.
October 2022

- Isadora instability unsolved, begin switching Body Tracking to Processing, using
OpenKinect libraries from Daniel Shiffman.

- Troubleshooting sonic component
November 2022

- Processing code finalized, Sonic Component successfully added.
December 2022

- Third full Exhibition at “The Library as a Futurist Book”
- Text element dropped, Sonic component fully operational
- Stable for multiple hours

January 2023
- Begin intensive Java Learning
- Revisitation of Kinect code, fundamentals established

February 2023
- Reassessing of the Installation, integration of Physics objects
- Idea drafted for Current iteration
- Deep dive into learning the Processing language.

March 2023
- Isadora fully dropped, Sonic Component added to processing
- Adoption of Box2D Engine to handle Physics
- Sonic Component added to Box2D
- Kinect Tests with Box2D. Proved Extremely difficult.
- Abandonment of Box2D Engine to handle Physics
- Start writing Box class
- Begin work on purpose-built Physics engine
- Establish Testing Grounds on Github for tests
- Object interaction successful (though buggy), Kinect functionality working
- Multi-Kinect tests still inconclusive
- Scaling Tests inconclusive
- https://github.com/SWSpratlin/Thesis_TestingGrounds.git

5

https://github.com/SWSpratlin/Thesis_TestingGrounds.git

April 2023
- Optimization of Physics engine
- Finalization and stability testing of Object Collision
- Integration of Sonic component to full testing grounds
- Multi-Kinect issues resolved
- “Reset” function added
- Equipment List drafted and reviewed
- Additional Equipment purchased and tested
- Presentation and Demonstration on 4/18 for New Media Survey
- Display Format decided

May 2023
- Fourth full Exhibition at Diamond Screen Festival
- Defense of Inhabitance at Diamond Screen Festival

6

Inhabitance Production Budget

Item Unit Cost AMT Budget Cost In-Kind Cost Total Cost Total Budget Cost Subtotal

Isadora Subscription $18.95 12 $227.40 $0 $227.40 $227.40 $227.40

Elgato HD60 Capture Card $155.00 1 $0.00 $155.00 $155.00 $227.40 $382.40

Arduino Uno + Case $30.66 1 $30.66 $0.00 $30.66 $258.06 $413.06

Soldering Supplies $38.96 1 $38.96 $0.00 $38.96 $297.02 $452.02

Heatshrink Tubing $6.35 1 $6.35 $0.00 $6.35 $303.37 $458.37

BreadBoard $15.82 2 $31.64 $0.00 $31.64 $335.01 $490.01

Arduino Extension Cable $22.25 1 $22.25 $0.00 $22.25 $357.26 $512.26

Force Sensitive Resistors $15.66 4 $62.64 $0.00 $62.64 $419.90 $574.90

Foam Mats $25.00 1 $25.00 $0.00 $25.00 $444.90 $599.90

Masonite Hardboard $13.98 1 $13.98 $0.00 $13.98 $458.88 $613.88

Kinect 1 $46.18 1 $46.18 $0.00 $46.18 $505.06 $660.06

Kinect 2 $20.09 1 $20.09 $0.00 $20.09 $525.15 $680.15

Kinect 3 $6.99 1 $6.99 $0.00 $6.99 $532.14 $687.14

Overhead Webcam $69.96 1 $69.96 $0.00 $69.96 $602.10 $757.10

Webcam Extension Cable $15.00 1 $15.00 $0.00 $15.00 $617.10 $772.10

Apple MultiPort Adapter $69.00 1 $69.00 $0.00 $69.00 $686.10 $841.10

Processing & Kinect Research $45.00 1 $45.00 $0.00 $45.00 $731.10 $886.10

Projectors $1,554.61 2 $0.00 $3,109.22 $3,109.22 $731.10 $3,950.32

Projection Screens $60.00 2 $0.00 $120.00 $120.00 $731.10 $4,070.32

Sony FS5 $3,400.00 1 $0.00 $3,400.00 $3,400.00 $731.10 $7,470.32

Kinect (Library) $30.00 1 $0.00 $30.00 $30.00 $731.10 $7,500.32

Tripods $150.00 1 $0.00 $150.00 $150.00 $731.10 $7,650.32

Combo Stand $348.00 1 $0.00 $348.00 $348.00 $731.10 $7,998.32

Projectors (new) $350.00 2 $700.00 $0.00 $700.00 $1,431.10 $8,698.32

Projection Screens (new) $200.00 2 $400.00 $0.00 $400.00 $1,831.10 $9,098.32

Speakers (new) $450.00 1 $450.00 $0.00 $450.00 $2,281.10 $9,548.32

*In Kind from University $0.00 TOTAL $9,548.00

*Purchased OOP

*Purchased through Grant funds

7

SETTING UP INHABITANCE

Spatial Requirements

Inhabitance requires a relatively large, relatively square/rectangular space to set up.
A minimum Distance of 2 Feet is required to allow the sensors to work, with participants
able to go no further than 20 feet from the sensors.

Short Throw projectors and Rear Projection is recommended for the most control but not
required if the space has pre-installed ceiling-mounted projectors.

A small table or platform about 2-3 feet in height is required to house the sensors (and
Computer if no pre-existing computing space exists).

An optimal hardware list can be found at the end of this guide.

General Space Setup

8

Instructions

After the space has been measured, confirmed to meet the spatial requirements, the

platform for both sensors and Computer has been set up, and all relevant equipment has

been gathered, follow the steps outlined below to set up and run Inhabitance:

1) Connect the Mac Mini (or equivalent Mac computer) to an external display for

setup and calibration.

a) Download all relevant files and assets from

https://github.com/SWSpratlin/Thesis_TestingGrounds

2) Connect the Kinect Camera(s) to the Computer

3) Launch the included “RGB Calibration” downloaded from Github

4) Adjust the Kinect(s) to either:

a) Produce a seamless video feed between the two of them

b) Include as much of the space as Possible with a single sensor

5) Mark the Kinect(s) positions on the platform. Close “RGB Calibration”

6) Set Up Projection Screens and (Rear) Projectors

7) In “System Settings > Desktop and Dock > Displays Have Separate Spaces” and

toggle this setting OFF.

8) Connect both Projectors to the Computer.

9) In “System Settings > Displays” adjust the Resolution and Arrangement so that the

Projectors show a Resolution of “480” (Tests in progress to fix this issue) and the

two Projectors are arranged next to each other. Make sure the projector seam

aligns with where the Projection Screens meet in the middle.

10) Launch the “Depth Calibration” app downloaded from Github

11) With another person, Adjust the depth calibration to Desired Range. Record

Calibration Settings.

12) Launch “Inhabitance” in Visual Studio Code, Connect Speakers.

a) Input depth measurements, test.

9

https://github.com/SWSpratlin/Thesis_TestingGrounds

Hardware Setup

Red Lines are for Power

Black Lines are for Data Appropriate Cabling

USB C wiring to Display is necessary when using an External Display

Kinects require a USB A, or a first-party USB C Adapter.

10

Optimal Hardware List

Computing

- Mac Mini (INTEL ONLY)

- Any Apple computer with at least 2 Display Outputs and 2 USB A inputs.

Kinects

- One or Two Kinect V1 Cameras

- Models 1414 or 1473

Projectors

- BenQ MW853UST Ultra Short Throw Projector

- Rear projection for best results

- Rear Projector should have a throw ratio < 0.5:1 to save space.

- Ceiling Mounted Projectors must be tested on a case-by-case basis

Projection Screen

- Any 16:9 Ratio projection Screen will work.

- 1 screen for each Kinect

- Best results stem from at least 5’ height on the screens, with the screens

raised ~2 Feet from the ground. This allows the Kinects to cover the most

seamless ground.

Speakers

- Any TRS Connecting speakers will work.

- The Computer must be able to send signal via TRS cable to the speakers. If

a designated receiver is needed to power the speakers, ensure that the

receiver has a TRS Input, or RCA input with the proper adapter.

11

TECHNICAL BREAKDOWN

Inhabitance requires a fair amount of technical knowledge to properly test and run. This

section will outline the specific technologies that are being used in the classes and

source code of Inhabitance as well as what specific software/system requirements are

needed for the installation to run in both its Sketch format as well as the Packaged

Application format.

At this time, Inhabitance only runs on MacOS Intel. Apple Silicon still contains bugs in the

Kinect library, which prevent the program from compiling and running properly. For best

results, use the specified hardware listed in the Setup Instructions.

Before assessing the software requirements of Inhabitance, it should be noted that a

basic knowledge of coding will be assumed, as well as cursory knowledge of Java (and

by extension, Processing).

12

Software Requirements

Sketch Format

- In order to run Inhabitance in it’s sketch format, the following must first be

installed:

- Java JRE

- Java JDK

- Visual Studio Code

- Visual Studio Code Relevant extensions

- Processing Language Integration

- Processing IDE

- Make sure to install processing.jar for all users on the computer

- Processing Libraries:

- Java Point class by Oracle

- OpenKinect by DanielShiffman

- SimpleOpenNI by Max Rheiner

- Sound by Processing Foundation

- All Relevant files from

https://github.com/SWSpratlin/Thesis_TestingGrounds

- These must all be run on an Apple Intel computer that meets the requirements

listed in the Setup Instructions section.

Packaged Application Format

- This is unfortunately currently non-functional.

- Additional Tests required, but should be ready to go soon.

13

https://github.com/SWSpratlin/Thesis_TestingGrounds

Inspection of Code

This section will break down the specifics of both the “main” as well as the “Box” class in

order to establish a baseline understanding of how to troubleshoot or adapt the

installation to a specific space.

MAIN CODE

This is the main code for Inhabitance, putting all the pieces together. There’s not much

room for customization here, but this is important for troubleshooting and calibration.

import processing.sound.*;

import java.awt.Point;

import org.openkinect.freenect.*;

import org.openkinect.processing.*;

public PApplet master = this;

//Master Image

PImage masterImg;

//Array to store the Int arrays for the Switching block

ArrayList<int[]> currentArray = new ArrayList<int[]>();

//Depth Thresholds

float minDepth = 300;

float maxDepth = 800;

//Kinects to Iterate through

ArrayList<Kinect> kinects;

//Boxes and Notes to assign

ArrayList<Box> boxes;

ArrayList<String> notes;

//Number of Boxes to spawn

int boxNumber = 40;

14

//Device variables

int numDevices = 0;

This is the declaration of all the global variables, and Initialization of the currentArray for

the switching block later in draw();

void setup() {

// Size. Width has to be double the width of a Kinect

//This lets 2 Kinect feeds populate next to each other

size(1280,480);

//Populate Notes Array

notes = new ArrayList<String>();

notes.add("A__1.wav");

notes.add("B__1.wav");

notes.add("C__1.wav");

notes.add("D__1.wav");

notes.add("E__1.wav");

notes.add("F__1.wav");

notes.add("G__1.wav");

notes.add("H__1.wav");

notes.add("I__1.wav");

notes.add("J__1.wav");

notes.add("K__1.wav");

notes.add("L__1.wav");

notes.add("M__1.wav");

notes.add("N__1.wav");

notes.add("O__1.wav");

notes.add("P__1.wav");

notes.add("Q__1.wav");

notes.add("R__1.wav");

notes.add("S__1.wav");

notes.add("T__1.wav");

notes.add("U__1.wav");

notes.add("V__1.wav");

notes.add("W__1.wav");

notes.add("X__1.wav");

15

notes.add("Y__1.wav");

notes.add("Z__1.wav");

This is a long block for a simple thing. This populates a String ArrayList to be put into the

SoundFile constructors within the Box class.

//Kinect initialization

numDevices = Kinect.countDevices();

println(numDevices);

//Initialize Kinect array

kinects = new ArrayList<Kinect>();

This counts the devices and prints it to the console for troubleshooting purposes. Look

for the single number in the console and make sure it matches the physical number of

Kinects you’ve hooked up. This currently only works with 2, but may expand to more if

the need appears.

//Iterate through as many Kinects as are connected

for (int i = 0; i < numDevices; i++) {

//Initialize object for each Kinect detected

Kinect tempKinect = new Kinect(this);

//Activate the Current Kinect

tempKinect.activateDevice(i);

//Initialize Depth for current Kinect

tempKinect.initDepth();

//Add the current Kinect to the Array

kinects.add(tempKinect);

//Initialize rawDepth array for each Kinect

//MUST BE IN THIS LOOP OR ONLY ONE KINECT WILL WORK

16

int[] tempRawDepth = tempKinect.getRawDepth();

//Add the rawDepth array to the Switching Array

currentArray.add(tempRawDepth);

}

This is the lynch pin for the dual kinects to work. Iterating through each of the Kinect

devices and activating them/Initializing their depth. The important part of this is also

adding int arrays to the currentArray ArrayList. Doing this in this loop makes the dual

Kinects both activate.

//Initialize Box Array

boxes = new ArrayList<Box>(boxNumber);

//Create Letters

for (int i = 0; i < boxNumber; i++) {

//Temp Boxes, spawn at random places on screen

Box tmpBox = new Box(int(random(width)), int(random(height)),

15, 15, 150);

// Populate the Coordinate Array for each letter

tmpBox.getCoord();

//Add each new Letter to the box Array

boxes.add(tmpBox);

}

Initialize the Boxes, add them to an array, and place them at random spots on the screen.

This also populates the Coordinate array for each box. If you change the font, letter size,

or anything else, color the box so you can keep the sizes relatively consistent. Odd

Numbers work better for the coordinate arrays.

17

//Blank image

masterImg = createImage(width, height, RGB);

}

Draw the blank Master Image.

//Reset Function, will work out a different physical interface

//at a later time. Possibly Arduino Button.

void mouseReleased() {

for (int i = 0; i < boxes.size(); i++) {

boxes.get(i).bx = int(random(width));

boxes.get(i).by = int(random(height));

}

}

Reset function tied to the mouse releasing. Tying to the release keeps the reset from

happening every frame the mouse is pressed. Good solution, might add another physical

interface to control this.

//Calibration Controls

void keyPressed() {

if (keyCode == RIGHT) {

maxDepth += 10;

}

if (keyCode == LEFT) {

maxDepth -= 10;

}

if (keyCode == UP) {

minDepth += 10;

}

if (keyCode == DOWN) {

minDepth -= 10;

}

}

18

Calibration controls to adjust the depth map. This will be very useful during initial setups

in new areas.

void draw() {

//Load masterImg pixel Array

masterImg.loadPixels();

//Interating/Switching Variables

int k = 0;

int image = 0;

Load the pixel array and declare the iterating variables

//Combo Loop

for (int i = 0; i < masterImg.pixels.length; i++) {

//Set up the current array at the start of the loop

if (i == 0) {

image = 0;

// Modulus to switch the array every other time.

} else if (i % kinects.get(image).width == 0) {

// check which array is selected

if (image == 0) {

// if it's 0, switch images that we're indexing

image = 1;

/* Subtract the width of the image from K so K

iterates over the same

set of numbers twice each time. Use [k] to control

each image individually

Only has to go back when going to the second image

(one on the right) otherwise

19

it can just keep going. */

if (k > kinects.get(image).width) {

k -= kinects.get(image).width;

}

Start of the switching loop. This loop switches which array is coloring the Master Image

depending on where in the base image array we are. This causes one row of each of the

base images to color onto the master at a time. It will color one row of the first, then one

row of the second, then the second row of the first, then the second row of the second.

} else {

// don't have to reset K when coming back to the

first image

image = 0;

}

}

//reset K if it reaches the end prematurely.

//This helps to solve OutOfBounds errors

if (k >= currentArray.get(image).length) {

k = 0;

}

//Assign depth values to Master image

if (currentArray.get(image)[k] >= minDepth &&

currentArray.get(image)[k] <= maxDepth) {

masterImg.pixels[i] = color(255);

} else {

masterImg.pixels[i] = color(0);

}

//Increment k

k++;

}

20

The second half of the switching block, which includes a short statement that colors the

master image directly into the Pixel Array.

//Update Master Image

masterImg.updatePixels();

//Display Master Image

image(masterImg, 0,0);

//Physics for Boxes

for (int i = 0; i < boxes.size(); i++) {

boxes.get(i).lookUnder(masterImg);

boxes.get(i).display();

boxes.get(i).edgeBounce();

boxes.get(i).collisionPoint();

boxes.get(i).collisionVector();

}

// //debugging purposes and performance checks

// fill(255);

// textSize(20);

// text(frameRate, 10, 10);

// stroke(255);

// strokeWeight(10);

// line(11, 11, frameRate * 4, 11);

}

Two blocks here. The first handles all the physics for the Letters. These methods are

outlined below in the CLASS METHODS section. The commented out section is used for

performance checks and debugging. Check the framerate via text and a visual indicator

so it is easy to see if something is drastically impacting performance, or if the hardware

that is being used is up to the task of running this installation. Recommended to run this

with the text during testing, then take it out afterwards.

21

BOX CLASS

This is a purpose-built class to handle the Letters in Inhabitance. Any adjustments that

need to be made to the letters, their collision physics, or Sound Assignments should

happen within this class.

class Box{

//X and Y size for the collision of the box

int bW;

int bH;

//Corner coordinates, determines the location of the box

int bx;

int by;

//Threshold for the search to return a collision point

int threshold = 220;

//Center Coordinates of the Box

int bCx = bW / 2;

int bCy = bH / 2;

Instantiation of the Class Variables. These should never be changed.

PImage box; //Box for collision detection area

IntList px; //Array for collision detection

ArrayList<Point> coord; //Coordinate array for Vector generation

Point cPoint; //Point that feeds from collisionPoint into collisionVector.

char letter; //Random letter variable, global so it can change

int letterNumber; //Number associated with each letter.

int noteNumber; // ASCII number to access the <notes> array

SoundFile boxNote;

float varAmp = 0;

//objects for any movement related methods

PVector location;

PVector velocity;

PVector acceleration;

22

PVector friction = new PVector(0,0);

// Boolean for sound methods.

boolean hasMoved = false;

boolean isMoving = false;

float f; //friction coefficient, used in collisionVector

float mass = 1.5; //mass, just to find out if it helps. (it doesn't really)

PFont font;

The rest of the Class Variables. These also have no reason to be changed.

//Constructor. Called in SETUP

//Intakes spawn coordinates, size, color

Box(int x_, int y_, int sizeW, int sizeH, int bColor) {

//Spawn Coordinate variables

this.bx = x_;

this.by = y_;

//Size variables

this.bW = sizeW;

this.bH = sizeH;

Constructor. This initializes the Box object with a designated X and Y Coordinate, pixel
Width, pixel Height, and Color. In the main code, the color can be changed to see exactly
where the active collision area is. This helps with troubleshooting Collision Detection and
Edge Bouncing. Keep these in mind if things are going wrong with collisions.

//Initialize Collision variables

location = new PVector(this.bx, this.by);

velocity = new PVector(0,0);

acceleration = new PVector(0,0);

These collision variables are CRUCIAL to the operation of the Box. Do not change these
for any reason. There are other places to adjust the Velocity/Acceleration, so do not
change them here. This merely initializes the variables for global usage later.

23

//Create PImage for the Box

imageMode(CORNER);

box = createImage(bW,bH, HSB);

//Color Letter

fill(200);

font = createFont("01_AvenirHeavy.ttf", 30);

The PImage for the Box, and the initialization of the letter/letter color. This is a visual
change, and can be adjusted. Look into fill(); in the Processing documentation for
information about how to adjust this setting. This is also where the font is called. If for any
reason the font needs to be changed, simply load a .ttf file into the data folder, and
replace the name in the createFont() section.

//Generate random character

letterNumber = int(random(65, 65 + 26)); //generate ASCII

values for char(). CAPS.

noteNumber = letterNumber - 65; //convert ASCII values to ints

that can access <notes>

letter = char(letterNumber); // Assign char() a random CAPS

letter

boxNote = new SoundFile(master, notes.get(noteNumber));

This is the random generator. This generates a value between 65 and 90. These
numbers then correspond with ASCII values in the char(); object. For optimization, this
value is then modified and used to access the <notes> array in the main code. This is
actually a clever bit of programming, as the sounds are never actually all loaded at the
same time. The <notes> array contains strings of the names of each sound file. These are
stored in the array in order corresponding to the letters of the alphabet. Then, the sound
file is loaded in each individual box object using the Name data stored in the string.

//Color Box pixels (mostly for debugging)

box.loadPixels();

for (int i = 0; i < box.pixels.length; i++) {

24

//Make collision box transparent

box.pixels[i] = color(bColor, 0,0,0);

}

//Update Box pixels

box.updatePixels();

}

This is the end of the constructor. This is where any collision area color is assigned. Look
at the color(); Processing Reference for more information about how to use this datatype.

CLASS METHODS

void getCoord() {

//initialize coordinate array

coord = new ArrayList<Point>();

//comb through the entire area of the box to assign every pixel

a coordinate

for (int y = 0; y < this.bH; y++) {

for (int x = 0; x < this.bW; x++) {

//assign coordinates. USES CALCULATION TO MAKE SURE THE CENTER

//COORDINATE IS 0,0. COLLISION IS EXTREMELY BUGGY WITHOUT THIS

coord.add(new Point(x - (bW / 2),y - (bH / 2)));

}

}

}

Populates the Coordinate Array with Points taken from iterating through each of the X
and Y values in the Width and Height. While this doesn’t return anything, it does allow for
the Coordinate array to be accessed by the later collision methods.
The calculation in the add() function is actually extremely important, as the collision
detection had trouble handling all positive numbers. This sets the center of the collision
box as (0,0), and allows for the rest of the collisions to happen without trouble.

// Display the Box(if visible) and Letter

25

void display() {

// Call box image. Necessary for loadPixels() later to work

image(box, bx, by);

//Call the text and character. This is where the text can be

//customized visually

textFont(font, 30);

text(letter, bx,(by + bH));

//debugging text goes here

// String debug = "--";

// textSize(20);

// text(debug, bx, by - 1);

}

Display Method. This is where the visual customization of Size can happen. Uncomment
the debugging text to check any object-specific values (like amplitude, position, or
velocity). This spawns small text above the letter that can be used to troubleshoot
problems. This is often faster than debugging since there are so many complex for loops
in the code.

void lookUnder(PImage p) {

//Generate PImage (and therefore a pixels array) for the space

under the box

PImage r = p.get(this.bx, this.by, this.bW, this.bH);

//create pixels array that can be referenced

px = new IntList();

px.append(r.pixels);

}

“LookUnder” method. This populates the <px> array and allows the collisions to work.
The <px> Array is a continually updating array that contains the values from the Pixel
array from the small section of the larger image that are under each box. (The larger
image is PImage master; for reference). This method needs to be called in draw() in order

26

to properly function, as it needs to update every frame.

Point collisionPoint() {

// Xand Y arrays to create a centroid coordinate

IntList collisionArrayX = new IntList();

IntList collisionArrayY = new IntList();

// Xand Y sum variables that clear every loop for the average

//calculation to take place

int sumX = 0;

int sumY = 0;

The beginning of the collisionPoint method. This returns a Point object for use in the
collisionVector method.

The arrays and sum variables are intended to add stability to the collision, rather than
operating on the very first pixel that meets the criteria, this takes the mean of any pixels
that meet the criteria every 2 rows and uses that to calculate a “centroid”.

This centroid is a little more consistent, and results in collisions that feel more natural,
and go in more intended directions.

//scan the whole px array

for (int i = 0; i < px.size(); i++) {

// Check if any given pixel is brighter than the threshold

if (int(brightness(px.get(i))) >= threshold) {

//populate the X and Y arrays with the values from

the

// coord array.

collisionArrayX.append((coord.get(i).x));

collisionArrayY.append((coord.get(i).y));

}

Populate the X and Y arrays with any pixels that are over a certain threshold (listed
earlier). Since the master image is literally only 0 or 255, this is largely useless, but again,
the threshold adds some stability and consistency.

27

if (i % (this.bW * 2) == 0) {

//Adding the size check here to stop empty arrays

from trying to trigger a for loop

if (collisionArrayY.size() != 0 &&

collisionArrayX.size() != 0) {

// Add each value to the sum, to be divided for the

mean

for (int o = 0; o < collisionArrayX.size(); o++) {

sumX += collisionArrayX.get(o);

sumY += collisionArrayY.get(o);

}

Mean calculation for all entries in the X and Y arrays. A simple check for active indices in
the arrays prevents a nullPointer or OutofBounds error.

//assign cPoint as the mean of the arrays rather than

// the first bright pixel in each pass. normalizes collision vector

cPoint = new Point((sumX /

collisionArrayX.size()),(sumY / collisionArrayY.size()));

//return the centroid for collision purposes

collisionArrayX.clear();

collisionArrayY.clear();

return cPoint;

}

}

}

If there are active indices, return a collision point of the mean of both arrays.

//if there are no bright pixels, return null

cPoint = null;

return null;

28

}

If there are not active indices, return null. This causes problems when any function tries
to access cPoint when it is null, but a simple “ if (cPoint != null)” solves that problem.

void collisionVector() {

//Method variables.

//Friction coefficient. Change from between 0.01 and 0.5 for

best results

float f = 0.25;

//Acceleration coefficient for how much speed picks up after

collision

//Change between 8 and 20 for best results

float aMult = 8;

//speed limiter so things don't fly away

//Change between 3 and 10 for best results

float topSpeed = 4.5;

//Method objects

PVector force;

//Directional Vector for collision direction

PVector dir = new PVector();

Method variables for collisionVector. This is where much of the physics behavior can be
modified. Change them in line with the instructions in the comments to adjust how the
physics behave. Lower aMult for a lower speed from a collision. Lower or raise friction to
decrease/increase the amount of time the letters take to stop. Change topSpeed to allow
objects to go faster or remain slower (beware, topSpeed has adverse effects if changed
too dramatically. Generally recommended to stay within the guidelines).

if (cPoint != null) {

//Get collision vector

29

PVector colPoint = new PVector(cPoint.x, cPoint.y);

PVector centerPoint = new PVector(bCx, bCy);

//Calculate the direction between the center point and

Collision Point

dir = PVector.sub(centerPoint, colPoint);

//Normalize the vector, and multiply it to create

acceleration upon collision

dir.normalize();

dir.mult(aMult);

isMoving = true;

Assign a PVector from cPoint, and a new PVector from the CenterPoint. These are then
subtracted to get a new PVector in the opposite direction of the collision. This vector is
normalized and multiplied to create an acceleration value.

isMoving is used later for consistency issues.

} else {

//If there is no collision, make sure the directional

vector is zeroed out.

//Causes drift without this.

dir.set(0,0);

isMoving = false;

}

Zero everything out if cPoint is null. Note that trying to call cPoint in this section results in
nullPointer errors.

//SET UP FRICTION

friction = velocity.get();

friction.mult(-1);

friction.normalize();

friction.mult(f);

//Apply collision vector to acceleration

30

acceleration.set(dir);

//APPLY FRICTION

friction.div(mass);

acceleration.add(friction);

Set up the friction vector, apply the acceleration value, and then apply the friction to the
acceleration value. This results in the object continually slowing down, since the
CollisionVector gets called every frame.

//UPDATE

location.set(this.bx,this.by);

velocity.add(acceleration);

velocity.limit(topSpeed);

location.add(velocity);

acceleration.mult(0);

//UPDATEPOSITION

this.bx = int(location.x);

this.by = int(location.y);

Simply continually updating all the physics information, and applying that to the position.

float lowThresh = -0.04;

float highThresh = 0.04;

// Variable Amp

float varAmp = map(this.by, 0, height, 0,1);

boxNote.amp(varAmp);

Velocity threshold variables for use later, and a simple code to tie each sound file's
volume with it’s position on screen.

//lotta && statements to find out if 2 values are within a

range

if (lowThresh <= velocity.x && velocity.x <= highThresh &&

lowThresh <= velocity.y && velocity.y <= highThresh) {

velocity.set(0,0);

31

isMoving = false;

}

There were issues with objects drifting rather than stopping, so this simple if statement
tells each object to stop if the velocity reaches a certain threshold. 4 conditions are
needed so the object stops ONLY if both X and Y velocity are within a certain range. Also
changes the isMoving to false.

if (isMoving == true && boxNote.isPlaying() == false) {

boxNote.play();

isMoving = false;

}

Play the sound if the box is moving! Easy, simple.

float noteThresh = 0.25;

if (isMoving == true && boxNote.position() > noteThresh) {

boxNote.jump(0);

isMoving = false;

}

}

There were issues with the note not playing again until after the letter stopped moving
AND the sound finished playing. This simple code block solves this by jumping the
playhead to 0 if the box is still moving and the note is through a specified number of
seconds. In this case its ¼ second, but this can be changed if need be.

//bounce off the edges

void edgeBounce() {

//Check if the box is on the edge (same for all)

if (this.bx < 0) {

//set location to the lower bound, invert and multiply

velocity to

32

//avoid getting stuck on the edges

this.bx = 0;

velocity.x *= -4;

} else if (this.bx + bW >= width) {

this.bx = width - bW;

velocity.x *= -4;

}

if (this.by < 0) {

this.by = 0;

velocity.y *= -4;

} else if (this.by + bH >= height) {

this.by = height - bH;

velocity.y *= -4;

}

}

}

Bounce the box off the edges with 4 times their current velocity. This makes it easier to
retrieve objects that have gathered in the corner.

33

EXTERNAL ASSETS AND DATA

Assets
- In order to properly troubleshoot Inhabitance, there are a few assets that are

important to have on whatever computing system is being used to run the
installation.

- Processing IDE or Visual Studio Code
- This is the optimal way to edit any of the source codes or classes

that come with Inhabitance. This project was created in Visual
Studio Code, and can be easily edited in it, assuming the correct
extensions are installed to allow integration with the Processing
Language. This does not allow debugging, but the troubleshooting
text blocks of code should allow for issues to be easily spotted.

- Github or Github Desktop
- Github is the main platform on which Inhabitance is distributed, so a

base understanding and the proper software is important. Having
GitHub Desktop makes cloning/forking the whole repository simple.
This way, any updates can be easily pushed to any iteration of the
installation without troublesome site visits.

Data
- There are two main blocks of data that are important to Inhabitance:

- Audio Files
- 16 Bit .wav files. 26 of them, names with the following convention

- “(LETTER)__1.wav” (case sensitive)
- If any of the files break from this structure without explicit

documentation in the main code and/or github page, they will not
work, and the application will not run. Because of the way the sound
file retrieval is coded, they have to keep a consistent naming
structure in order to smoothly retrieve, attach, and play sound files.

- Font(s)
- Any .ttf file can be loaded in, assuming the name is changed in

accordance with the description on Page 24. If the name in the Box
class cannot (or will not) be changed, loading any .ttf file with the
name “01_AvenirHeavy.ttf” will work.

- Do not load more than one font into the data folder of the
installation.

34

FREQUENTLY USED LEARNING & RESEARCH MATERIALS

Learning Processing by Daniel Schiffman
- A book detailing the beginnings of how to utilize the

processing language for animation, rendering, and interactivity. While
this book does cover mostly the basics of coding, and how to get your
first processing sketches up and running, it is an extremely helpful
reference when doing even very complex sketches. No one keeps all
every constructor, detail, and process in their head, so having this
book on hand as reference was extremely helpful.

The Nature of Code by Daniel Schiffman
- A much more complex book written to explore the ways natural

phenomena might be simulated in code. This book goes into detail
about vector calculation, simulated physics, implementation of
pre-built physics libraries, forces, and complex interactivity. As
Inhabitance grew into needing its own Physics, this book was
extremely helpful as a reference library for complicated topics.

Making Things See by Greg Bornstein
- A useful (though somewhat outdated) book about the

fundamentals of using Kinect V1s as “computer eyes”. This book dives
into exactly what kind of technology the Kinect contains, and how to
implement that in different ways. While it does spend a significant
amount of time on Skeleton tracking, it does contain valuable details
about the data gathered by the depth mapping function.

Processing Documentation
- A full library of all included functions, classes, methods, and

syntax that can be used in Processing. Does not include any Java
utility packages, but those were worked out in a different research
topic. Included in this is the JavaDoc for processing’s documentation,
which includes readable lists of all classes and methods.

35

TroikaTronix Guru Sessions
- Used extensively while researching Isadora 3, though less

useful after the switch to processing.

LinkedIn Learning - Learning Java
- Since Processing is an abstraction of Java, it was important to

learn the basics of Java before diving into Processing. This included
syntax, data types, and overall fundamentals of code. Through the
entirety of the Winter of 2022 - 2023, this was singularly important to
establish a base of knowledge before moving into the final steps of
coding Inhabitance.

36

INHABITANCE

CONCLUSIONS AND FINAL THOUGHTS

In the 14 months of iterating through versions of Inhabitance, the piece has fully

transformed. Starting as a simple silhouette with an Alpha Channel, it is now a complex marriage

design, psychology, technology, space, and memory. During its evolution, Inhabitance has gone

through four significant stages (including this final one). These stages are as such:

- The Boulder (Spring 2022)

- The Hero (Summer 2022)

- The Cave (Fall 2022)

- Inhabitance (Spring 2023)

In order to properly organize my conclusive thoughts on the piece and its progression, it is

important to lay out the general structure of the evolution in each of the significant stages.

Spring 2022 - The Boulder

This was the first major step in the process. The foundation on which the rest of the

iterations stand, and without this, none of the others could have become what they became. This

all started with a singular technological idea: A Controllable Silhouette. What the silhouette

would do, how it would be controlled, what kind of interactivity the piece would have, these

were all still in nebulous states of “figuring it out”, but the idea of a Controllable Silhouette was

solid, and has been the connecting thread for each of the stages.

The Boulder also introduced the usage of Isadora, a very significant piece of software that

would allow for easily manipulated images to be stacked and projected in very precise ways.

Isadora, while simple on the surface, employed a node-based coding system, and provided a

solid base of technical understanding for the rest of the iterations. This also brought the first of

two uses of the Arduino. While this was not something that would continue through all the

iterations, it did help to start thinking about the project in terms of code.

While The Boulder was technologically successful and exceedingly stable, the core issues

with the work were with the conceptual and interactive ends of the piece. Fundamentally, The

37

Boulder actively rewarded non-interaction, with many users exploiting the use of a camera to

“cheat” the system. Additionally, users would simply step off of the active area in order to

circumvent the interaction designed by the FSRs and Arduino. Finally, the “reward” of reading

Albert Camus’s “Myth of Sisyphus” was not engaging enough on its own to keep participants

from leaving once they uncovered the technological functions.

Summer 2022 - The Hero

Months later, the work would evolve into another stage, later titled The Hero. “Myth of

Sisyphus” was removed and replaced with ten combinations of random words from a short

excerpt of the Hito Steyerl essay “A Thing Like You And Me”. This lowering of the barrier to

entry allowed many more people to meaningfully engage with the piece, although what they

gleaned from the work was not exactly “meaningful”. The core text was still too esoteric for a

pedestrian audience, even if the interaction was more intentionally designed and executed.

The Hero also introduced the usage of Kinect sensors to track participants, however the

integration with Isadora was buggy and crashed often. While this was an important step forward

technologically, the inconsistency dragged the whole of the piece down to what ended up as a

half-baked idea with poorly implemented technology.

Fall 2022 - The Cave

The final iteration before Inhabitance, this brought together many of the poorly

implemented ideas that were present in The Hero, and polished them into something much more

consistent and stable. The Kinect sensors stayed, though Isadora still proved too unstable to run

them. To handle this, the Processing language was implemented, and simple sketches (with

poorly coded solutions) meant that The Cave was stable, unmonitored, for multiple hours.

Isadora was still utilized for an added sonic component, adding an important layer of user control

to the piece. Rather than operating the installation through a physical interface, participants

themselves became the physical interface. This was the most successful usage of technology and

interaction that the piece had seen. However, there was still a missing piece in regards to

conceptual depth. The Controllable Silhouette was present, but it didn’t have any real purpose. It

was simply a visual set piece.

38

Spring 2023 - Inhabitance

The final version of the piece, and one that has taken the most technical work to get up

and running. In preparation to get this iteration up and running, a baseline of knowledge had to

be established in Java, Processing, and (unfortunately) physics. This iteration started out as a

refined version of The Cave, with some added interactive features (such as a vocal component, or

additional text), but after research and discussions about other Digital Interactive Installations,

and how they presented their interactivity, it grew into something much more ambitious.

In late February, it was decided that interactive letters would be a conceptually

meaningful direction to follow. This would allow users to leave their own messages, allowing

them to directly influence the next participants that would come after them. Implementing this

interactivity meant finding a consistent, reliable, and stable way to handle interactive objects;

which in turn meant finding a suitable physics engine to handle collisions. This led down a

weeks-long rabbit hole of learning Box2D (a simple pre-built physics engine that powers many

mobile games such as Angry Birds), and reading Daniel Schiffman’s “Nature of Code” cover to

cover. After the long stint of testing, it became clear that a purpose-built physics engine was

necessary, and work began on the Box class that handles all the physics in Inhabitance. Overall,

this was a positive direction to move, as it meant a lighter weight code that could run on a wider

range of machines with differing computing power.

All in all, the learning and iterating process for Inhabitance has been a fruitful one. Over

the past year, I have been able to take a specific look at what exactly the work that I do is about,

and why I keep coming back to this same topic. Highlighting this gave me a clear vision into

exactly what I wanted from this piece, and in turn allowed me to focus on the most important

parts of what makes this installation work.

Final Thoughts

I am thankful for the support given to me in the multiple classes I’ve iterated this piece

in, and to all those that have given me meaningful feedback. Without the valuable input I’ve

received, this installation would never have evolved past its first stages, and I would be left still

wondering exactly what it is I make art about.

39

	01_Title Page-1
	02_Table of Contents
	03_Inhabitance Abstract
	04_Mechanical Art in the Age of Mechanical Reproduction
	05_Thesis Timeline
	06_Budget
	07_Setup Instructions
	08_Technical Breakdown
	09_Frequently Used Learning Materials
	10_Conclusions and Final Thoughts

